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We derive a scaling relation for Richtmyer-Meshkov instability of incompressible fluids. The
relation is tested using both numerical simulations and experimental data. We obtain collapse of
growth rates for a wide range of initial conditions by using vorticity and velocity scales associated
with the interfacial perturbations and the acceleration impulse. A curve fit to the collapsed growth
rates yields a fairly universal model for the mixing layer thickness versus time.

In this work, we consider the incompressible
Richtmyer-Meshkov (RM) instability of an impulsively
accelerated interface separating two fluids of different
density [1, 2]. This instability is of fundamental
importance in a variety of applications spanning a
wide range of length scales. At large scales RM
instability generates mixing in supernovae [3, 4]; at
smaller scales it enhances mixing in ramjet engines
[5]; at even smaller scales it initiates shell break-up in
inertial confinement fusion capsules [6, 7]. The initial
evolution of RM instabilities can be described in terms
of vortex dynamics. Zabusky and others [8, 9] have
discussed the crucial role vorticity plays in the early
development of RM and other baroclinic instabilities.
In this Brief Communication, we demonstrate that
characteristic vorticity and velocity scales, derived
from the impulse and initial conditions, lead to
collapse of mixing layer growth rates over a broad
parameter space.

The conservation laws governing RM instability
between two incompressible miscible fluids in a
Cartesian frame of reference are [10]:
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Here, ρ is the mixture density, Ym is the mass fraction
of species m, Vi = (Vx, Vy , Vz) is the mass-averaged
mixture velocity, P is the pressure, D is the Fickian
diffusivity, µ is the dynamic viscosity, and gi is the
acceleration. Our goal is to derive a model for the
rate of growth of the mixing region, given a functional
form for gi and a known set of initial conditions. The
width of the RM mixing region is defined in terms of
entrained mole fractions. The mole fraction of heavy

fluid is

X =
ρ − ρ1

ρ2 − ρ1
, (4)

(where ρ1 and ρ2 are the densities of the light and
heavy fluids, respectively) and the mole fraction of
mixed fluid is

Xm(X) =

{

2X if X ≤ 1/2
2(1 − X) if X > 1/2

. (5)

Using (4) and (5), the mixing layer thickness is defined
as

h ≡

∫

∞

−∞

Xm(〈X〉) dz , (6)

where the angle brackets, 〈〉, denote an xy-average,
taken parallel to an interface located at z = 0. The
rate of growth of the mixing region is then ḣ = ∂h/∂t.

The net vorticity in the mixing region is

Ω(t) =
1

lxlylz

∫ lz/2

−lz/2

∫ ly

0

∫ lx

0

||ω(x, t)|| dxdy dz ,

(7)
where ω is the vorticity vector, lx and ly are the
horizontal dimensions of the flow domain, and lz is
the z-extent of the rotational fluid. Similarly, the root-
mean-square (rms) velocity is
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(8)
If ts is the time-duration of the impulse, then Ωs =
Ω(ts) and Vs = V ′(ts) correspond to the net vorticity
and speed generated by the impulse, respectively. An
expression for Ωs can be derived from the vorticity
equation,
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(9)
by assuming quiescent flow during the impulse. For
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the studies herein, the impulse takes the form

g(t) =

{

(0, 0,−G sin(t)) if t ≤ π
(0, 0, 0) if t > π

, (10)

hence ts = π. By further assuming a hydrostatic
pressure gradient, i.e., ∂P

∂x = ∂P
∂y = 0, and ∂P

∂z = ρgz

for 0 ≤ t ≤ ts, (9) reduces to
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Taking the density variation in the layer during the
impulse to be time-invariant and integrating (11-13)
over 0 ≤ t ≤ ts, together with the initial condition
ω(x, 0) = 0, yields
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In the simulations herein, the initial density
distribution takes the form

ρ(x, 0) =
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where δ is the initial thickness of the diffusion zone,
ξ(x, y) describes the interfacial perturbations and ε is a
dimensionless disturbance amplitude. We obtain ω by
plugging (17) into (14-16) and subsequently compute
Ωs from (7). The Biot-Savart law is then used to
calculate the velocity vector,

V =
1

4π

∫

ω(x̄, ts) ×
(x − x̄)

||x − x̄||3
dx̄dȳ dz̄ , (18)

at which point V is inserted into (8) to obtain
Vs. Thus, given functional forms for ξ(x, y) and gz,
characteristic vorticity and velocity scales (Ωs & Vs)
can be obtained analytically.

In order to evaluate the validity of the static-
flow approximations discussed above, analytical
expressions (denoted Ω

a
s & V a

s ) are compared to
numerical values computed from simulation data
(denoted Ω

c
s & V c

s ). In the simulations, (1) and

(2) are solved with a hybrid spectral-Padé scheme
for spatial derivatives, combined with a predictor-
corrector pressure-projection method for temporal
integration. Verification and validation tests of the
numerical algorithm were previously reported [10, 11].
Dimensional variables are normalized by the grid
spacing, ∆, the light fluid density, ρ1, and the
acceleration magnitude, G; i.e., ∆ = ρ1 = G = 1.
Setting ρ2 = 3, δ = 4, ε = 0.2 and ξ(x, y) =
[

cos(2πx
lx

) + cos(2πy
ly

)
]

, we find: Ω
c
s = 3.3 × 10−4,

Ω
a
s = 3.4×10−4, V c

s = 1.0×10−2 and V a
s = 9.3×10−3.

Increasing δ from 4 to 8 results in Ω
c
s = 6.6 × 10−4,

Ω
a
s = 6.9×10−4, V c

s = 2.0×10−2 and V a
s = 1.8×10−2.

If the impulse is reversed, i.e., G = −1 instead of 1,
Ω

a
s remains unchanged while Ω

c
s decreases by about

2%. This decrease is expected due to the fact that,
when the pulse is directed from light to heavy fluid,
the perturbations invert before the layer begins to
grow. Differences between analytical and numerical
values for Ωs and Vs are small; hence, the quasi-static
assumptions made in determining Ω

a
s and V a

s appear
reasonably valid, provided the impulse is sufficiently
quick, such that the layer grows very little during
the impulse. Furthermore, our results indicate that
collapse of growth rates does not depend on whether
analytical or numerical values are used to scale the
data.

Since 1/Ωs and Vs ought to provide natural time and

velocity scales for any RM flow, we expect ḣ(tΩs)/Vs

to be a fairly universal function. As a first test of this
hypothesis, our scaling is applied to the experimental
results of Niederhaus and Jacobs [7], where we have

used second-order central differences to calculate ḣ
from their mixing layer data (figure 1a). These
experiments were conducted with miscible fluids at
low Atwood number using a 3 m drop tower and sled
apparatus. Perturbations were imposed on the density
interface by gently oscillating the tank horizontally
to produce n + 1/2 standing internal waves. In the
present work, experimental results are shown for n =
1, an Atwood number of A ≡ (ρ2 − ρ1)/(ρ2 + ρ1) =
0.16, and six initial disturbance amplitudes. As can be
seen in figure 1b, the current scaling does an excellent
job of collapsing the data.

As a second test of the effectiveness of our scaling,
computational results are shown for ḣ versus time
for various combinations of the parameters ρ2, ε,
kp, and σ. In the simulations, kp is the peak
wavenumber of a Gaussian perturbation spectrum
with standard deviation σ. Unless otherwise noted, all
computational results discussed below are for multi-
mode disturbances such as those used in [10], a domain
size of 2563, lz/2 = 4δ(1 + ε), δ = 4, and σ = 2.
Owing to the broad-bandedness of the initial density
disturbance, the numerical results are scaled using Ω

c
s

and V c
s .

Figure 2 shows unscaled and scaled mixing layer
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FIG. 1: Unscaled and scaled mixing layer growth rates
computed from the experimental data of Niederhaus &
Jacobs (J. Fluid Mech., 485, 2003, p. 243).
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ḣ
Vs

a b

FIG. 2: Unscaled and scaled mixing layer growth rates for
kp = 16, ε = 0.2, and A = 0.25 (solid), 0.5 (dotted), and
0.6 (dashed).

growth rates for kp = 16 and ε = 0.2 with A =
0.25, 0.5 and 0.6. There are significant differences
between the mixing layer growth rates at early and
intermediate times; i.e., the peaks are widely disparate
and somewhat out of phase. On a side note, the
differences between peaks appear to decrease with
increasing Atwood number. The maximum difference
between peak growth rates is about 61% (figure 2a);
whereas, the maximum difference between peaks for
the scaled growth rates is about 5% (figure 2b).

Figure 3 shows unscaled and scaled mixing layer
growth rates for A = 0.5 and kp = 16 with ε = 0.2, 0.4
and 0.8. The unscaled peak growth rates are again out
of phase, with roughly an 88% maximum difference
between peaks (figure 3a). The scaled growth rates
are in phase, with a maximum peak-to-peak difference
of about 6% (figure 3b).

Figure 4 shows unscaled and scaled mixing layer
growth rates for A = 0.5 and ε = 0.2 with kp = 16,
24 and 32. In this case the differences in the unscaled
growth rates persist to very late time. The maximum
difference between peak growth rates is about 60%
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FIG. 3: Unscaled and scaled mixing layer growth rates for
A = 0.5, kp = 16, and ε = 0.2 (solid), 0.4 (dotted), and
0.8 (dashed).
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FIG. 4: Unscaled and scaled mixing layer growth rates for
A = 0.5, ε = 0.2, and kp = 16 (solid), kp = 24 (dotted),
and 32 (dashed).

(figure 4a) decreasing to about 6% when scaled (figure
4b).

We can evaluate empirical models for ḣ using the
scaled growth rate data (figures 2b, 3b and 4b).
Beginning with a generalization of the model by Sadot
et al. [12],

ḣ

Vs
=

a1Ωst

1 + a2Ωst + a3(Ωst)b
, (19)

which has limiting behavior limt→0 ḣ = 0 and
limt→∞ ḣ ∝ t1−b, we seek values for a1, a2, a3 and
b which best fit the data. Setting b = 2, as in the
Sadot et al. model, and using least-squares we find
a1 = 69.2, a2 = 2.55, and a3 = 71.7. This model
has difficulty capturing the entire growth history (red
curve in figure 5). The constants can be adjusted to
better capture either the peaks or late time growth
rates but not both at once. A better fit is obtained
by considering a range of b and choosing the value
(2.37 in this case) that minimizes the rms difference
between the model (for a given b) and the numerical
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FIG. 5: Mixing layer growth data for the three numerical
cases, color curves represent models based on data fitting.

data. The resulting curve fit does much better at
predicting the mean growth rate of the collapsed data
at early and intermediate times, while also capturing
its asymptotic behavior (green curve in figure 5).
This model constitutes an improvement over previous
models [12–16] in that it is based on a fairly universal
scaling, and as such, should be valid for single or multi-
mode disturbances of arbitrary amplitude at both
early and late times.
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